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1. Introduction

It is known that at low energy the world volume modes of N M2-branes decouple from the

eleven-dimensional gravity in the bulk leading to an N = 8 superconformal field theory

in three dimensions. This superconformal theory has an SO(8) R-symmetry which can

be identified with the geometric SO(8) symmetry acting on the eight transverse directions

of the M2-branes. Although we have understood this theory through its symmetries, it

was not clear for over a decade how to write a model describing three dimensional N = 8

superconformal field theory.

In a series of paper Bagger and Lambert [1 – 3] and also Gustavsson [4] have constructed

an action which is consistent with all the symmetries of a 3D N = 8 superconformal

field theory; namely it is conformal invariant with 16 supercharges and has an SO(8) R-

symmetry acting on eight scalar fields. Therefore this model has the potential to describe

the world-volume theory of multiple M2-branes.

This construction relies on the introduction of an algebraic structure called a “Lie 3-

algebra” characterized by 4-index structure constants, fABC
D and a bi-linear metric hAB .

The structure constants satisfy a fundamental identity which is essentially a generalization

of the Jacobi identity of the Lie 2-algebra. Depending on whether the metric is positive def-

inite or indefinite we distinguish two cases: Euclidean and Lorentzian theories.1 Although

the Euclidean theory, originally proposed by Bagger and Lambert, can only describe a

theory with SO(4) gauge symmetry where fABCD = ǫABCD, the Lorentzian theory may

be written for any classical Lie algebra [6 – 8].

1See [5] for an alternative treatment.
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Even though in the original Lorentzian theories there were potential ghost-like degrees

of freedom, a variant has been proposed that has been argued to be unitary and describe

multiple M2-branes [9, 10]. The argument is as follows. One modifies the theory by gauging

a shift symmetry for one of the “null” coordinates XI
+ by introducing a gauge field. The

other null coordinate XI
− is frozen as a result of the equation of motion of the gauge field.

Therefore the resultant theory is manifestly ghost-free. Indeed, using the Higgs mechanism

of ref. [11] it was shown [8, 12] that the theory reduces to maximally supersymmetric Yang-

Mills in three dimensions whose gauge coupling is the vev of the scalar field. This result

indicates that the ghost free Lorentzian theory is closely related to SYM theory. However

in [13] it was shown that starting from maximally supersymmetric 3D Yang-Mills theory

and using a duality transformation due to de Wit, Nicolai and Samtleben [15 – 17], one

can directly obtain the ghost-free Lorentzian 3-algebra theory.2 Since it can be derived

from SYM, the final theory is manifestly equivalent to it on-shell. Though it does have

enhanced R-symmetry as well as superconformal symmetry off-shell, it is the D2-brane

theory on-shell for any finite vev of the gauge-singlet scalar field.

On the other hand at higher orders in α′ the world-volume theory of multiple D2-

branes is believed to be described by some non-Abelian generalization of the DBI action.

Therefore, one would expect that the 3-algebra theories just represent the lowest order of

the full effective action describing the world-volume of multiple M2-branes. Therefore it

should be interesting to study non-linear corrections to 3-algebra theories. One straight-

forward approach is to consider these corrections in the context of Lorentzian 3-algebras,

where as indicated above they should be derivable from the SYM theory.

Accordingly, in this article we extend the considerations of [13] when higher-derivative

corrections are taken into account. More precisely starting with the N = 8 supersymmetric

Yang-Mills theory on D2-branes and incorporating higher-derivative corrections to lowest

nontrivial order, we perform a duality to derive the Lorentzian 3-algebra theory along with

a set of derivative corrections given by non-Abelian F 4 terms [18]. We will show that these

corrections assemble themselves neatly into the basic objects of a 3-algebra, namely the

3-bracket and covariant derivatives. This holds for both bosonic and fermionic terms and

we provide explicit forms for the leading correction in both cases.

Finally we conjecture that the derivative corrections we have obtained here, being inde-

pendent of the details of the 3-algebra, should be relevant for Euclidean 3-algebra theories

as well. This conjecture in principle enlarges the potential applicability of the results in

this paper to a wider class of 3-algebras beyond the Lorentzian-signature ones. However,

because the 3-bracket for us is totally antisymmetric, our results can be immediately gen-

eralized at this stage only to maximally supersymmetric (N = 8) Euclidean 3-algebras, of

which the sole example is the Bagger-Lambert A4 theory [3]. It may be possible in the

future to extend these considerations to 3-algebra theories with lower supersymmetry such

as those discussed in refs. [19, 20] (see also [21]).

The rest of the paper is organized as follows. In section two we will set our notation

2The same mechanism was subsequently used to derive globally N = 8 supersymmetric actions from

supergravity [14].
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by reviewing the construction of ref. [13]. In section three we will extend the results to

incorporate bosonic non-Abelian F 4 terms and the corresponding scalar terms. In section

four we discuss some general features of these higher order corrections. In section five we

obtain the SO(8) covariant fermionic terms to the same order in α′. Finally we present a

conjecture and our conclusions.

2. Review

We would like to consider the maximally supersymmetric interacting super Yang-Mills

Lagrangian in 2+1 dimensions based on an arbitrary Lie algebra G whose bosonic action

in leading order is given by:

L = Tr

(

−
1

4g2
YM

FµνFµν −
1

2
DµXiDµXi −

g2
YM

4
[Xi,Xj ][Xj ,Xi]

)

, (2.1)

Here Aµ is a gauge connection on G. The field strength and the covariant derivatives are

defined as:

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ] and Dµ = ∂µ − [Aµ, · ] . (2.2)

The Xis are seven matrix valued scalar fields transforming as vectors under the SO(7)

R-symmetry group.

In [13] it was shown that this Lagrangian can be brought to the form of the Lorentzian

Bagger-Lambert or 3-algebra field theory proposed in [6 – 8], or more precisely to the

“gauged” version of the above theory described in [9, 10]. Here we first review the re-

sults of [13].

We proceed by introducing two new fields Bµ and φ that are adjoints of G. In terms

of these new fields the dNS duality transformation [15 – 17] is the replacement:

Tr

(

−
1

4g2
YM

FµνFµν

)

→ Tr

(

1

2
ǫµνλBµFνλ −

1

2
(Dµφ − gYMBµ)2

)

. (2.3)

We see that in addition to the gauge symmetry G, the new action has a noncompact Abelian

gauge symmetry that we can call G̃, which has the same dimension as the original gauge

group G. This symmetry consists of the transformations:

δφ = gYMM , δBµ = DµM , (2.4)

where M(x) is an arbitrary matrix, valued in the adjoint of G. Clearly Bµ is the gauge

field for the shift symmetries G̃. Note that both in eq. (2.3) and eq. (2.4), the covariant

derivative Dµ is the one defined in eq. (2.2).

If one chooses the gauge DµBµ = 0 to fix the shift symmetry, the degree of freedom of

the original Yang-Mills gauge field Aµ can be considered to reside in the scalar φ. In this

sense one can think of φ as morally the dual of the original Aµ [15 – 17]. Alternatively we

can choose the gauge φ = 0, in which case the same degree of freedom resides in Bµ. The

equivalence of the r.h.s. to the l.h.s. of eq. (2.3) can be conveniently seen by going to the

– 3 –
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latter gauge. Once φ = 0 then Bµ is just an auxiliary field and one can integrate it out to

find the usual YM kinetic term for Fµν .

We can now proceed to study the dNS-duality transformed of the bosonic sector of

N = 8 Yang-Mills theory. Its Lagrangian is:

L =Tr

(

1

2
ǫµνλBµFνλ −

1

2
(Dµφ − gYMBµ)2 −

1

2
DµXiDµXi

−
g2
YM

4
[Xi,Xj ][Xj ,Xi]

)

.

(2.5)

The gauge-invariant kinetic terms for the eight scalar fields have a potential SO(8)

invariance, which can be exhibited as follows. First rename φ(x) → X8(x). Then the

scalar kinetic terms become −1
2D̂µXID̂µXI , where:

D̂µXi = DµXi = ∂µXi − [Aµ,Xi], i = 1, 2, . . . , 7

D̂µX8 = DµX8 − gYMBµ = ∂µX8 − [Aµ,X8] − gYMBµ . (2.6)

Defining the constant 8-vector:

gI
YM = (0, . . . , 0, gYM) , I = 1, 2, . . . , 8 , (2.7)

the covariant derivatives can together be written:

D̂µXI = DµXI − gI
YMBµ . (2.8)

One can now uniquely write the SYM action in a form that is SO(8)-invariant under

transformations that rotate both the fields XI and the coupling-constant vector gI
YM:

L =Tr
(1

2
ǫµνλBµFνλ −

1

2
D̂µXID̂µXI

−
1

12

(

gI
YM[XJ ,XK ] + gJ

YM[XK ,XI ] + gK
YM[XI ,XJ ]

)2
)

.

(2.9)

The final step is to replace gI
YM by a scalar field XI

+ that is constrained to be a

constant.3 This proceeds as described in [13] and we will describe it again in the following

section where we address higher-derivative terms. The fermionic contributions also must

be added, and these too will be described in what follows.

3. F
4 terms

The aim of this section is to redo the procedure of the previous section for subleading terms

of the three dimensional theory. The subleading terms consist of F 4 with four derivative

interactions of the scalar fields. To find the explicit terms we note that the leading order

3Flux quantization in the original theory implies the matrix-valued scalars have a periodicity XI
∼

XI + XI
+II. We thank Juan Maldacena for emphasizing this to us.
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terms in the action can be found from reduction of the ten dimensional pure gauge Yang-

Mills theory. Therefore to get the higher derivative terms for the three dimensional theory

we will start from ten dimensional F 4 terms given by [18]4

L(10) =
1

12
Tr

[

FMNFRSFMRFNS +
1

2
FMNFNRFRSFSM −

1

4
FMNFMNFRSFRS

−
1

8
FMNFRSFMNFRS

]

,

(3.1)

where M,N,R, S = 0, · · · , 9. The aim is now to reduce this action to three dimensions.

To do that we decompose the indices to µ, ν, ρ, σ = 0, 1, 2 and i, j, k, l = 1, · · · , 7. Then the

Yang-Mills plus F 4 terms lead to the following Lagrangian:

L(4) = L(2) +

6
∑

i=1

Tr L
(4)
i , (3.2)

where

L(2) = −
1

4g2
YM

FµνFµν (3.3)

L
(4)
1 =

1

12g4
YM

[

FµνFρσFµρF νσ+
1

2
FµνF νρFρσF σµ−

1

4
FµνFµνFρσF ρσ −

1

8
FµνFρσFµνF ρσ

]

L
(4)
2 =

1

12g2
YM

[

Fµν DµXi F ρν DρX
i + Fµν DρX

i Fµρ DνXi − 2Fµρ F ρν DµXi DνX
i

−2Fµρ F ρν DνXi DµXi − Fµν Fµν DρXi DρX
i −

1

2
Fµν DρXi Fµν DρXi

]

−
1

12

(

1

2
Fµν Fµν Xij Xij +

1

4
Fµν Xij Fµν Xij

)

(3.4)

L
(4)
3 = −

1

6

(

DµXi DνXjFµν + DνXj Fµν DµXi + Fµν DµXi DνXj

)

Xij (3.5)

L
(4)
4 =

1

12

[

DµXi DνXj DνXi DµXj + DµXi DνXj DµXj DνXi (3.6)

+DµXi DνX
i DνXj DµXj − DµXi DµXi DνX

j DνXj

−
1

2
DµXi DνXj DµXi DνXj

]

L
(4)
5 =

g2
YM

12

[

Xkj DµXk Xij DµXi + Xij DµXk Xik DµXj (3.7)

−2Xkj Xik DµXj DµXi − 2Xki Xjk DµXj DµXi

−Xij Xij DµXk DµXk −
1

2
Xij DµXk Xij DµXk

]

L
(4)
6 =

g4
YM

12

[

XijXklXikXjl+
1

2
XijXjkXklX li−

1

4
XijXijXklXkl−

1

8
XijXklXijXkl

]

(3.8)

4We are using units in which α′ = 1

2π
.
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Following the previous section the aim is to rewrite the above Lagrangian in terms

of the new fields, Bµ,X8 such that the obtained Lagrangian will be manifestly SO(8)

invariant. It is useful to proceed in two steps. First we simply rewrite the Lagrangian in

terms of the Poincare dual field strength defined by:

F̃µ ≡
1

2
ǫµνλF νλ (3.9)

Note that in our conventions (with a (−+ +) metric), the inverse transformation is Fµν =

−ǫµνλF̃ λ. Later we will replace F̃ by an independent field Bµ that will be subjected to

constraints via the equations of motion, leading back to the original action.

Replacing Fµν in terms of F̃µ everywhere in the preceding Lagrangian, we end up with:

L(2) + L
(4)
1 + L

(4)
2 + L

(4)
3 = (3.10)

Tr

[

1

2g2
YM

F̃µF̃µ +
1

12g4
YM

(

F̃µF̃µF̃νF̃
ν +

1

2
F̃µF̃ν F̃µF̃ ν

)

+
1

12g2
YM

(

2F̃µF̃ν DνXi DµXi − 2F̃µF̃µ DνXi DνXi + 2F̃µF̃ ν DµXi DνX
i

+F̃µ DνXi F̃ν DµXi − F̃µ DνXi F̃µ DνX
i + F̃µ DµXi F̃ ν DνXi

)

+
1

12

(

F̃µ F̃µ Xij Xij +
1

2
F̃µ Xij F̃µ Xij

)

+
1

6
ǫρµν

(

F̃ ρ DµXi DνXj + DνXj F̃ ρ DµXi + DµXi DνXj F̃ ρ

)

Xij

]

Here we have written only the terms involving F̃ , as the remaining ones L
(4)
4 , L

(4)
5 , L

(4)
6 are

obviously unaffected by our substitution.

Let us now perform a dNS duality, as in the previous section, but in the presence of

the above higher-derivative corrections. Introducing again an independent 1-form (matrix-

valued) field Bµ, it is easy to see that the above action can be replaced with one where F̃

appears only in the Chern-Simons interaction F̃µBµ:

L(2) + L
(4)
1 + L

(4)
2 + L

(4)
3 = Tr

[

F̃µBµ −
g2
YM

2
BµBµ

+
g4
YM

12

(

BµBµBνB
ν +

1

2
BµBνB

µBν

)

(3.11)

+
g2
YM

12

(

2BµBν DνXi DµXi − 2BµBµ DνXi DνXi + 2BµBν DµXi DνXi

+Bµ DνXi Bν DµXi − Bµ DνXi Bµ DνX
i + Bµ DµXi Bν DνX

i

)

+
g4
YM

12

(

Bµ Bµ Xij Xij +
1

2
Bµ Xij Bµ Xij

)

+
g2
YM

6
ǫρµν

(

Bρ DµXi DνXj + DνXj Bρ DµXi + DµXi DνXj Bρ

)

Xij

]

– 6 –
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To show that this substitution is correct, simply integrate out the field B order by order

(truncating at quartic order, since that is all the input we had to start with) using its

equation of motion. It is easy to check that this brings the above Lagrangian to the form:

L(2) + Tr(L
(4)
1 + L

(4)
2 + L

(4)
3 ) + O(F 6). (3.12)

We now use this form, depending on the new field Bµ, to rewrite the Lagrangian in an

SO(8) invariant way. For this, introduce the field X8 and replace Bµ, everywhere it occurs,

by − 1
gYM

(DµX8 − gYMBµ). There is now a shift symmetry as in eq. (2.4) using which one

can set X8 = 0 and we get back to the above action. The utility of this transformation

will be that in more general gauges, X8 can carry the dynamical degree of freedom.

As explained in eqs. (2.6), (2.7), (2.8), it is useful to write the coupling constant

formally as an 8-vector, since this allows us to express all the covariant derivatives in a

unified manner as D̂µXI , I = 1, 2, · · · , 8. Then under the above replacement, eq. (3.10)

becomes:5

Tr

[

1

2
ǫµνρBµFνρ −

1

2
D̂µX8D̂µX8

+
1

12

(

D̂µX8D̂µX8D̂νX8D̂νX8 +
1

2
D̂µX8D̂νX

8D̂µX8D̂νX8

)

+
1

12

(

2D̂µX8 D̂νX8 D̂νXi D̂µXi − 2D̂µX8 D̂µX8 D̂νXi D̂νXi

+2D̂µX8 D̂νX8 D̂µXi D̂νX
i + D̂µX8 D̂νXi D̂νX8 D̂µXi

−D̂µX8 D̂νXi D̂µX8 D̂νXi + D̂µX8 D̂µXi D̂νX8 D̂νX
i

)

(3.13)

+
g2
YM

12

(

D̂µX8 D̂µX8 Xij Xij +
1

2
D̂µX8 Xij D̂µX8 Xij

)

+
gYM

6
ǫρµν

(

D̂ρX8 D̂µXi D̂νXj + D̂νXj D̂ρX8 D̂µXi + D̂µXi D̂νXj D̂ρX8

)

Xij

]

It is now straightforward, though a little messy, to see that the leading order terms

given in equation (2.1) plus
∑6

i=1 Tr L
(4)
i can be written in the SO(8) invariant terms as

follows:

Tr

[

1

2
ǫµνρBµFνρ −

1

2
D̂µXID̂µXI (3.14)

+
1

12

(

D̂µXI D̂νX
J D̂νXI D̂µXJ + D̂µXI D̂νX

J D̂µXJ D̂νXI

+D̂µXI D̂νXI D̂νXJ D̂µXJ − D̂µXI D̂µXI D̂νXJ D̂νXJ

−
1

2
D̂µXI D̂νX

J D̂µXI D̂νXJ

)

5Using integration by parts and cyclicity of the trace one can show that the F̃ µDµX8 term vanishes.
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+
1

12

(

1

2
XLKJ D̂µXK XLIJ D̂µXI +

1

2
XLIJ D̂µXK XLIK D̂µXJ

−XLKJ XLIK D̂µXJ D̂µXI − XLKI XLJK D̂µXJ D̂µXI

−
1

3
XLIJ XLIJ D̂µXK D̂µXK −

1

6
XLIJ D̂µXK XLIJ D̂µXK

)

−
1

6
ǫρµνD̂ρXI D̂µXJ D̂νXKXIJK − V (X)

]

where

XIJK = gI
YM[XJ ,XK ] + gJ

YM[XK ,XI ] + gK
YM[XI ,XJ ] (3.15)

Here V (X) is the potential:

V (X) =
1

12
XIJKXIJK +

1

9 × 12

[

XNIJXNKLXMIKXMJL (3.16)

+
1

2
XNIJXMJKXNKLXMLI −

1

4
XNIJXNIJXMKLXMKL

−
1

8
XNIJXMKLXNIJXMKL

]

Once we have SO(8) covariance, we are free to replace the fixed vector of coupling

constants gI
YM by any arbitrary vector with the same modulus. The last step is to replace

these constants by a set of scalar fields XI
+ and introduce another scalar XI

− as well as a

gauge field Cµ,I with the kinetic term:

(Cµ I − ∂µXI
−)∂µXI

+ (3.17)

As explained in refs. [10, 13], this has the effect of constraining the vector XI
+ to be an

arbitrary constant which we can then identify with gI
YM.

Thus the final form of our derivative-corrected action is as in eqs. (3.14) and (3.16),

with the covariant derivatives replaced by:

D̂µXI = ∂µ − [Aµ,XI ] − BµXI
+ (3.18)

and the commutator terms eq. (3.15) replaced by the Lorentzian 3-algebra triple product:

XIJK = XI
+[XJ ,XK ] + XJ

+[XK ,XI ] + XK
+ [XI ,XJ ] (3.19)

This must be supplemented, of course, with fermionic terms as well as gauge-fixing terms

for the various local symmetries. We will discuss the fermions in detail in a subsequent

section.

To summarize, in this section we have used dNS duality to re-write the three dimen-

sional N = 8 supersymmetric Yang-Mills theory, including the first nontrivial derivative

corrections, in a form which is manifestly SO(8) invariant. We now turn to a discussion of

the generality of this result.

– 8 –
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4. Generality of the result and higher order terms

Encouraged by what we have found, we would like in this section to ask how general the

result is. Is it true that to any order, the derivative correction computed for N = 8 SYM in

3d can be re-expressed in SO(8) invariant form? Specifically we wish to understand whether

achieving SO(8) invariance depends on the specific combination of F 4 terms appearing in

eq. (3.1). If this is not the case, in other words if enhanced SO(8) is generically present

for any higher order Fn terms that one can think of writing down in 10d, then it would

not be such a miracle. But in fact, as we will see below, SO(8) enhancement does not hold

for generic higher-order corrections. The specific combination occurring in eq. (3.1), which

arises from string theory, is essential for the result that we found in order F 4, and a similar

situation is expected to hold in higher orders.

Instead of considering the most general case, we will find it illuminating to start with

a simplified approach. Consider an Abelian SYM theory in 10d. Let us now postulate a

generic quartic correction to the 10d Lagrangian, namely:

L
(4)
10d = λ1 FABFABFCDFCD + λ2 FA

BFB
CFC

DFD
A (4.1)

where we have put arbitrary coefficients in front of the two possible quartic terms. (In this

section we set gYM = 1 for notational simplicity.) After reducing to 3d, the field strength

terms can be dualized to 1-forms as before (using F̃µ = 1
2ǫµνλF νλ) and we find:

L(4)
gauge = (4λ1 + 2λ2) F̃µF̃µF̃ν F̃ ν (4.2)

Note that two different tensor structures in 10d have reduced to the same one in 3d. This

is because of the duality between 1-forms and 2-forms in 3d. On the other hand, the terms

involving ∂X are found to be:

L
(4)
∂X = − (8λ1 + 4λ2) ∂µXi∂µXi F̃νF̃

ν + 4λ2 ∂µXi∂νXiF̃µF̃ ν

+ 4λ1 ∂µXi∂µXi∂νXj∂νXj + 2λ2 ∂µXi∂νX
i∂µXj∂νXj (4.3)

where as usual the indices i, j = 1, 2, · · · , 7. For the Abelian case eqs. (4.2), (4.3) make up

the whole reduced action to this order, since commutator terms are absent.

Now let us ask if the above expression has SO(8) invariance after performing dNS

duality. To quartic order this duality merely replaces F̃µ everywhere in the quartic terms

by Bµ (as we will see, this is not the the case from order 6 onwards). After that, we replace

Bµ by −∂µX8. The result for the quartic action L
(4)
3d = L

(4)
gauge + L

(4)
∂X is:

L
(4)
3d = (4λ1 + 2λ2) ∂µX8∂µX8∂νX

8∂νX8 − (8λ1 + 4λ2) ∂µXi∂µXi∂νX
8∂νX8

+4λ2 ∂µXi∂νX
i∂µX8∂νX8 + 4λ1 ∂µXi∂µXi∂νX

j∂νXj

+2λ2 ∂µXi∂νX
i∂µXj∂νXj (4.4)

Now it is easy to see that the above action is equal to the SO(8) invariant combination:

4λ1 ∂µXI∂µXI∂νX
J∂νXJ + 2λ2 ∂µXI∂νXI∂µXJ∂νXJ (4.5)
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where I, J = 1, 2, · · · , 8, but only if the following constraint is satisfied:

λ2 = −4λ1 (4.6)

Without this constraint, L
(4)
3d cannot be recast in SO(8) invariant form.

In light of this simple computation, we may go back to the previous section and see

if that computation, specialized to the Abelian case, satisfies our constraint above. Once

we treat all F ’s as commuting, we find that the four coefficients in eq. (3.1) collapse to

two independent coefficients corresponding to λ1 = − 1
32 and λ2 = 1

8 . Therefore the above

constraint is satisfied. This explains why we found SO(8) invariance in the previous section

and makes it clear that this was crucially dependent on using the corrections that arise in

string theory (which evidently “knows” about this constraint) and would not have worked

for generic correction terms.

In fact, for the Abelian case it is an old result [22, 23] that SO(8) invariance can be

obtained for the full DBI action by performing a duality. We summarize that argument

here after translating it into our conventions for ease of comparison, and presenting in

the more “modern” dNS form which admits a non-Abelian generalization. Start with the

(2 + 1)d DBI action:

L = −

√

− det

(

gµν +
1

gYM
Fµν

)

(4.7)

This action is equivalent to the following action involving a new independent field Bµ:

L =
1

2
ǫµνλBµFνλ −

√

− det(gµν + g2
YMBµBν) (4.8)

To prove equivalence, simply integrate out Bµ from the latter action and recover the former

action.

Now noting that in static gauge, gµν = ηµν + ∂µXi∂νX
i, and making the replacement:

Bµ → −
1

gYM
D̂µX8 = −

1

gYM

(

∂µX8 − BµX8
+

)

(4.9)

we find that the action eq. (4.8) turns into:

L =
1

2
ǫµνλBµFνλ −

√

− det(ηµν + D̂µXID̂νXI) (4.10)

Hence SO(8) invariance is achieved. It is easily seen that this subsumes the special (quartic,

Abelian) case that we discussed at the beginning of this section.

The considerations in this section support our conjecture that the entire non-Abelian

D2-brane action can be recast in SO(8) invariant form, and constitute an important (though

long-known) consistency check on it, since if it works for the non-Abelian case then it must

necessarily work for the Abelian reduction. But to prove the (non-Abelian) conjecture in

general is more difficult, essentially because the full non-Abelian D-brane action is not yet

known. Having treated the bosonic terms to lowest nontrivial order in α′, we next turn to

treatment of the fermionic terms.
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5. Fermionic terms

The fermionic terms of the action can also be obtained from 10 dimensional supersymmetric

gauge theory reduced to three dimensions. To do this we first need the supersymmetrized

DBI action at α′2 level. Then we may reduce the fermionic terms to three dimension in

the same way as we have done for the bosonic part in a previous section. The aim would

be to rewrite the resulting fermionic terms in SO(8) invariant form.

Let us start with the Abelian case, which has essentially been treated in the older

literature. We will provide a re-derivation which stresses more explicitly the promotion to

SO(8) invariance. This will be a guide in studying the non-Abelian case. Start with the

following DBI Lagrangian in 10 dimensions [24]:

L = −

√

− det(ηMN + FMN − 2λ̄ΓM∂Nλ + λ̄ΓP ∂Mλ λ̄ΓP ∂N λ̄) (5.1)

Upon dimensional reduction to 3 dimensions, this reduces to:

−

(

−

∣

∣

∣

∣

∣

ηµν + Fµν − 2λ̄Γµ∂νλ + λ̄Γρ∂µλ λ̄Γρ∂νλ + λ̄Γi∂µλ λ̄Γi∂νλ −∂µXi

∂νX
i − 2λ̄Γi∂νλ ηij

∣

∣

∣

∣

∣

)
1

2

(5.2)

which can be rewritten as:

−

[

− det
(

ηµν + ∂µXi∂νX
i − 2∂µXiλ̄Γi∂νλ + λ̄Γi∂µλλ̄Γi∂νλ + Fµν

−2λ̄Γµ∂νλ + λ̄Γρ∂µλ λ̄Γρ∂ν λ̄
)

]
1

2

(5.3)

This can now be re-expressed as:

−

√

− det
(

G̃µν + DµXiDνXi + Fµν

)

(5.4)

where:

G̃µν = ηµν − 2λ̄Γ(µ∂ν)λ + λ̄Γρ∂µλ λ̄Γρ∂νλ

Fµν = Fµν − 2λ̄Γ[µ∂ν]λ − 2∂[µXiλ̄Γi∂ν]λ

D̂µXi = ∂µXi − λ̄Γi∂µλ (5.5)

Now following the result in ref. [24], the above action is dual to:

1

2
ǫµνρ

(

Bµ −
1

gYM
∂µX8

)

Fνρ −

√

− det(G̃µν + D̂µXID̂νXI) (5.6)

where

D̂µX8 ≡ ∂µX8 − gYMBµ (5.7)

and D̂µXi = DµXi, i = 1, · · · , 7 which was defined above.

This expression does not look SO(8) invariant, both for the Chern-Simons term and

the covariant derivative, but we can argue that in fact both these are SO(8) invariant. First
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consider the covariant derivatives. For the gYMBµ term we proceed as was explained for

the bosonic case. However, the fermionic term which appears in D̂µXi is absent in D̂µX8.

This seems to pose a problem for SO(8) invariance. In fact, the quantity:

Πi
µ = ∂Xi

µ − λ̄Γi∂µλ (5.8)

is a supercovariant quantity which occurs in many formulae. So the question is to under-

stand why

Π8
µ = ∂µX8 − λ̄Γ8∂µλ (5.9)

does not appear. This would be required to form the SO(8) vector ΠI
µ

As explained in ref. [25], because we are in static gauge both with respect to coordinate

transformations and supersymmetries, the fermion λ is really a 16-component fermion

descending from the 32-component fermion θ in the covariant D-brane formalism. Starting

with the original fermionic variable θ we define:

θ1 =
1

2
(1 + Γ8)θ, θ2 =

1

2
(1 − Γ8)θ (5.10)

(what we call Γ8 is referred to as Γ11 in ref. [25]). Then static gauge is chosen by putting

θ2 = 0, and rename θ1 as λ. Hence:

Γ8λ = λ (5.11)

It follows that:

λ̄Γ8∂µλ = λ̄∂µλ =
1

2
∂µ(λ̄λ) (5.12)

(using the identity λ̄χ = χ̄λ for Majorana-Weyl spinors in 10d). Therefore:

Π8
µ = ∂µ

(

X8 −
1

2
(λ̄λ)

)

(5.13)

and the second term can be removed by a shift of X8. This explains why the covariant

derivatives are in fact SO(8) covariant.

For the Chern-Simons term something similar happens. The extra term compared to

the bosonic case is proportional to:

ǫµνρ∂µX8
(

λ̄Γν∂ρλ + ∂νX
iλ̄Γi∂ρλ

)

(5.14)

Consider the first term in the above expression. To make it covariant we would like to

write it as:

ǫµνρ∂µX8 λ̄Γν∂ρλ = ǫµνρ∂µX8 λ̄ΓνΓ
8∂ρλ → ǫµνρ∂µXI λ̄ΓνΓ

I∂ρλ (5.15)

where the first step is an identity (because Γ8λ = λ) and in the second step we have added

a piece:

ǫµνρ∂µXi λ̄ΓνΓ
i∂ρλ (5.16)
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As we now show, this extra piece is equal to zero, which justifies adding it to make the

above term SO(8) covariant. We have:

ǫµνρ∂µXi λ̄ΓνΓ
i∂ρλ =

1

2
ǫµνρ∂µXi λ̄(ΓνΓi − ΓiΓν)∂ρλ

=
1

4
ǫµνρ∂µXi ∂ρ

(

λ̄(ΓνΓ
i − ΓiΓν)λ

)

(5.17)

which is zero on integration by parts. (Here we have used the identity λ̄ΓMNχ = χ̄ΓMNλ).)

Things work similarly for the second term in eq. (5.14):

∂µX8∂νX
i λ̄Γi∂ρλ = ∂µX8∂νX

i λ̄ΓiΓ8∂ρλ (5.18)

To make this covariant we need to add:

1

2
∂µXi∂νX

j λ̄Γij∂ρλ =
1

4
∂µXi∂νX

j ∂ρ

(

λ̄Γijλ
)

(5.19)

but this is again zero on partial integration. Thus we have shown that the Abelian fermionic

Chern-Simons terms can be written in SO(8) invariant form as:

ǫµνρ∂µXI
(

λ̄ΓνΓ
I∂ρλ +

1

2
∂νX

J λ̄ΓIJ∂ρλ
)

(5.20)

Turning now to the non-Abelian case of interest to us, the relevant fermionic terms at

α′2 level in ten dimensional supersymmetric gauge theory are given by [26, 27]6

Lfer = Str

(

i

2
λ̄ΓMDMλ +

i

4
λ̄ΓMDNλFMRFRN −

i

8
λ̄ΓMNRDSλFMNFRS

−
1

16
λ̄ΓMDNλ λ̄ΓNDMλ

)

.(5.21)

We proceed as follows. First reduce the action to 3 dimensions and then try to rewrite

the obtained action in an SO(8) invariant form. Of course one also needs to take the

symmetrized trace Str. We note however that the first term is easy to deal with. In fact,

dimensionally reducing to three dimensions one gets

i

2
Tr

(

λ̄ΓµDµλ + gYMλ̄Γi[Xi, λ]

)

, (5.22)

which can be written as follows:

i

2
Tr

(

λ̄ΓµDµλ +
1

2
λ̄ΓIJ [XI ,XJ , λ]

)

, (5.23)

where

[XI ,XJ , λ] = gI
YM[XJ , λ] − gJ

YM[XI , λ]. (5.24)

6Here we have not considered terms like F λ̄Γλλ̄Γλ which from the string theory point of view are of

order of α′2g3 while the terms we are considering are of order of α′2g2. For details see [26, 27].
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The last term in eq. (5.21) can also be reduced to three dimensions, leading to

−
1

16
Str

(

λ̄ΓµDνλ λ̄ΓµDνλ + gYMλ̄ΓiDνλ λ̄Γν [X
i, λ] + gYMλ̄Γµ[Xi, λ] λ̄ΓiDµλ

+g2
YMλ̄Γi[Xj , λ] λ̄Γj[Xi, λ]

)

(5.25)

Using our notation the above action can be recast in the following SO(8) invariant form

−
1

16
Str

(

λ̄ΓµDνλ λ̄ΓµDνλ +
1

4
g2
YMλ̄ΓIJ [XK ,XL, λ] λ̄ΓKL[XI ,XJ , λ]

+
1

2
λ̄Γµ[XI ,XJ , λ] λ̄ΓIJDµλ +

1

2
λ̄ΓIJDνλ λ̄Γν [X

I ,XJ , λ]

)

(5.26)

Of course we still need to take the symmetrized trace Str.

The second and third terms in eq. (5.21) are more involved. For these terms it is useful

to first expand the Str (of course at the end we will again rewrite the action in terms of

Str). Doing so, we get

Str

(

i

4
λ̄ΓMDNλFMRFRN −

i

8
λ̄ΓMNRDSλFMNFRS

)

=
1

3!
Tr

[(

i

4
λ̄ΓMDNλFMRFRN −

i

8
λ̄ΓMNRDSλFMNFRS

)

(

i

4
λ̄ΓMDNλFRNFMR −

i

8
λ̄ΓMNRDSλFRSFMN

)

+4 more pairs obtained from permutations of FMN and λ

]

. (5.27)

We note, however, that to reduce and convert the obtained action to the SO(8) invariant

terms we do not need the four extra pairs coming from the permutations. As soon as we get

the SO(8) invariant from of the first two pairs, the others can be obtained by an obvious

permutation of λ’s and D̂XJ ’s. So in what follows we just concentrate on the first two

pairs.

Reducing the above part of the fermionic action from the first two pairs, one finds:

1

3!
Tr

[(

i

4

{

1

g2
YM

λ̄ΓµDνλ FµρFρν − λ̄ΓµDνλ DµX lDνX l −
1

gYM
λ̄ΓiDνλ DρXiFρν

− gYMλ̄ΓiDνλ XilDνX
l + λ̄Γµ[Xj , λ] FµρDρX

j

− gYMλ̄Γi[Xj , λ] DρXiDρX
j + g2

YMλ̄Γµ[Xj , λ]DµX lX lj

+ g3
YMλ̄Γi[Xj , λ]XilX lj

}

−
i

8

{

1

g2
YM

λ̄ΓµνρDσλ FµνF ρσ + λ̄Γµνρ[X
k, λ] FµνDρXk −

1

gYM
λ̄ΓµνlDσλ FµνDσX l

+ gYMλ̄Γµνl[X
k, λ] FµνX lk +

2

gYM
λ̄ΓµjρDσλ DµXjF ρσ

+ 2gYMλ̄Γµjρ[X
k, λ] DµXjDρXk − 2λ̄ΓµjlDσλ DµXjDσX l

– 14 –



J
H
E
P
1
0
(
2
0
0
8
)
0
3
2

+ 2g2
YMλ̄Γµjl[X

k, λ] DµXjX lk + λ̄ΓijρDσλ XijF ρσ

+ g2
YMλ̄Γijρ[X

k, λ] XijDρXk − gYMλ̄ΓijlDσλ XijDσX l

+ g3
YMλ̄Γijl[X

k, λ] XijX lk

})

+

(

the same terms with F ↔ F

)

+ · · ·

]

. (5.28)

Now the task is to rewrite these terms in SO(8) invariant form. To do this, following

the procedure of the previous section we should first dualize F to B field and then use the

shift symmetry to replace B by D̂X8. Using the properties of 3D gamma matrices and

dropping terms which are zero on shell7 one arrives at

i

8
Str

[

2λ̄ΓµΓIJDνλD̂µXID̂νXJ − 2λ̄ΓµDνλD̂µXID̂νXI (5.29)

+λ̄ΓIJKLDνλ XIJKD̂νXL − λ̄ΓIJDνλ XIJKD̂νXK

−2λ̄ΓIJ [XJ ,XK , λ]D̂µXID̂µXK − 2λ̄[XI ,XJ , λ]D̂µXID̂µXJ

−2λ̄Γµν [XI ,XJ , λ]D̂µXID̂νX
J − 2λ̄ΓµνΓIJ [XJ ,XK , λ]D̂µXID̂νXK

+λ̄ΓµΓIJ [XK ,XL, λ]D̂µXIXJKL − λ̄Γµ[XI ,XJ , λ]D̂µXKXIJK

−
1

3
λ̄ΓµΓIJKL[XL,XM , λ]XIJKD̂µXM − λ̄ΓµΓIJ [XK ,XL, λ]XIJKD̂µXL

−
1

6
λ̄ΓIJKL[XM ,XN , λ]XIJLXKMN −

1

2
λ̄ΓIJ [XK ,XL, λ]XIJMXKLM

]

.

To summarize this section, we have found the SO(8) invariant fermionic terms to lowest

nontrivial order in α′ and they are contained in the sum of eqs. (5.23), (5.26), (5.29).

6. A conjecture

A striking aspect of our result for higher derivative corrections is that it can be written

in a form that only uses basic objects of 3-algebras: the covariant derivative on scalars

and fermions, and the triple product [XI ,XJ ,XK ] and [XI ,XJ , λ]. To leading order in

derivatives we have written the complete answer, for both bosons and fermions, and we

expect it is maximally supersymmetric (though we did not prove that here).

Given this situation, it seems reasonable to speculate that the same derivative cor-

rections are relevant to all 3-algebras with maximal supersymmetry, regardless of their

signature. For Euclidean signature, this in fact only includes just one theory besides the

ones we were considering, namely the Bagger-Lambert A4 theory [3].8 Thus we conjecture

that the action in eqs. (3.14), (5.23), (5.26), (5.29) also embodies the derivative corrections

to the Euclidean 3-algebra A4 theory.

7More precisely we have ǫµνργρ = γµν . Moreover one will drop all terms involving α′2(γµ∂µλ +

gYMγi[Xi, λ]).
8For arbitrary signature it is possible to construct more such algebras. In particular, algebras with (2, p)

signature have been classified in [28]. We would like to thank Jose Figueroa-O’ Farrill for a comment on

this point.
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It may legitimately be argued that there is no concrete test of this conjecture given

that we do not presently know how to compute derivative corrections to the membrane field

theory starting from M-theory. However an important test in our opinion will be whether

the higher-derivative theory we have constructed is really maximally supersymmetric. Since

our Lagrangian inherits its entire structure from N = 8 SYM, this must surely be the case.

Assuming supersymmetry can be proved, it is most likely that the proof will rely only on

abstract 3-algebra properties and therefore will go through in the same way for the A4

theory.

7. Conclusions

In this paper we have shown that the world-volume theory of multiple D2-branes in string

theory, including both the N = 8 SYM part as well as the leading (bosonic and fermionic)

higher derivative corrections, is equivalent by a dNS duality to a derivative-corrected

Lorentzian 3-algebra theory. This generalizes the result in [13] to incorporate α′ cor-

rections. We see no obstacle in principle to extending this to any finite order in α′ as long

as the D2-brane action is known to that order.

The result has the elegant feature that it depends only on 3-algebra quantities: the 3-

bracket and covariant derivative. We have conjectured that it has more general significance

than the context in which we have derived it. Extended supersymmetric CFT’s in 3

dimensions appear to all depend on the 3-algebra structure (although if N < 8 then

some of the original 3-algebra assumptions need to be relaxed [19, 20]). Our results can

be extended in a straightforward manner only to the Euclidean A4 3-algebra but in the

future, with extra work, it should be possible to extend them at least to the N = 6 case.

Note added: while this article was being prepared ref. [29] appeared on the arXiv, in

which a non-linear theory for multiple M2-branes has been proposed. Earlier papers that

might be related are [30 – 32].
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